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1 Teaser of Course Topics

This lecture will be an advertisement for the topics in the course.1

1.1 Combinatorics of Sn and applications

We denote [n] := {1, . . . , n}.

Definition 1.1. The symmetric group Sn is the group of bijections σ : [n]→ [n].

We can write permutations as products of cycles.

Example 1.1. The permutation σ =
(
5 1 2 4 3

)
represents the bijection sending

1 7→ 5, 2 7→ 1, etc.

The conjugacy classes of Sn are the different cycle types. These correspond to partitions
of n. Let p(n) be the number of conjugacy classes of Sn. Euler showed that

1 +
∞∑
n=1

p(n)tn =
∞∏
i=1

1

1− ti
.

What does this all have to do with the symmetric group itself? Here is Percy MacMa-
hon’s version of the story. If we have a partition, we can think of it as a sequence of
numbers, padded with zeros at the end to make it infinite. We can write∑

λ∈P
t|λ| =

∞∏
i=1

1

1− ti
.

If we write the partition over and over in a grid (chopping off an element from the front
each time, we can get what is called a plane partition. This gives us∑

A∈PP
t|A| =

∞∏
i=1

1

(1− ti)i
,

1This is an advertisement of an advertisement, much like the ad before watching a trailer online.
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where |A| =
∑

i,j ai,j is the sum of the numbers in the plane partition. Why should this
be true? This is actually related to the representation theory of Sn.

MacMahon made a conjecture for higher dimensions:

Theorem 1.1. ∑
A∈P(d)

t|A| =
∏ 1

(1− ti)(id−1)
.

This does not work. It actually fails for d = 3 and a low coefficient like the coefficient
of t7. MacMahon did not understand why the formula was true, even though he proved it.
Irreducible representations of Sn will correspond to partitions of n Pn := {λ ∈ P : |λ| = n}
because these correspond to conjugacy classes of Sn.

Theorem 1.2 (A. Young, 1897). Let fλ be the dimension of Sλ. Then fλ is the number
of standard Young tableau with shape λ.

Definition 1.2. Given a partition λ, the young diagram of λ is the partition expressed as
stacked rows of boxes.

Example 1.2. Take λ = (4, 3, 3, 2, 1). The Young diagram of λ is

Definition 1.3. A Young tableau is a Young diagram where we fill in the boxes with
the numbers 1 to n, according to the rule that the numbers have to be increasing going to
the right and going down.

Example 1.3. Here is a Young tableau:

1 2 3 7

4 5 10

6 8

9 12

11

Theorem 1.3 (FRT, c.1960). fλ = n!∏
i,j hi,j

, where hi,j is the length of the hook starting

from position i, j and going to the right and downwards.

From representation theory, we can get that fλ | |Sn|, so we know that fλ is n! divided
by something. The magic is in what that something is.
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1.2 Representation theory of GLn(C)

A basic representation of GLn(C) is ρM is the matrix M acting on Cn. Another represen-
tation is the determinant map. We will find that representations of GLn(C) correspond to
sequences λ1 ≥ λ2 ≥ · · · ≥ λn.

Theorem 1.4 (Weyl). dim(ρλ) equals the number of semistandard Young tableau with
shape λ.

This will be another remarkable product formula. This, paired with the hook-length
formula, will pave the way for a nice proof of MacMahon’s formula.

1.3 Young graph

Definition 1.4. The Young graph is the graph with vertices λ ∈ Γ, and edges (λ, µ
where µ \ λ is a single difference.

Essentially, we have taken all young diagrams and made an undirected graph, partially
ordering them by containment.

Theorem 1.5. The number of loops of length 2n (that do not zigzag up and down) in the
Young graph is n!.

Proof. We can prove this using basic representation theory.

# loops =
∑
λ∈Pn

(# paths φ→ λ)2 =
∑
λ∈Pn

SYT(λ)2 =
∑
λ∈Pn

(fλ)2 = |Sn| = n!

What about general loops?

Theorem 1.6. The number of general loops is (2n− 1)!!.
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