Math 206B Lecture 1 Notes

Daniel Raban

January 7, 2019

1 Teaser of Course Topics

This lecture will be an advertisement for the topics in the course.¹

1.1 Combinatorics of S_n and applications

We denote $[n] := \{1, ..., n\}.$

Definition 1.1. The symmetric group S_n is the group of bijections $\sigma : [n] \to [n]$.

We can write permutations as products of cycles.

Example 1.1. The permutation $\sigma = \begin{pmatrix} 5 & 1 & 2 & 4 & 3 \end{pmatrix}$ represents the bijection sending $1 \mapsto 5, 2 \mapsto 1$, etc.

The conjugacy classes of S_n are the different cycle types. These correspond to partitions of n. Let p(n) be the number of conjugacy classes of S_n . Euler showed that

$$1 + \sum_{n=1}^{\infty} p(n)t^n = \prod_{i=1}^{\infty} \frac{1}{1 - t^i}.$$

What does this all have to do with the symmetric group itself? Here is Percy MacMahon's version of the story. If we have a partition, we can think of it as a sequence of numbers, padded with zeros at the end to make it infinite. We can write

$$\sum_{\lambda \in \mathcal{P}} t^{|\lambda|} = \prod_{i=1}^{\infty} \frac{1}{1 - t^i}.$$

If we write the partition over and over in a grid (chopping off an element from the front each time, we can get what is called a **plane partition**. This gives us

$$\sum_{A \in \mathcal{PP}} t^{|A|} = \prod_{i=1}^{\infty} \frac{1}{(1-t^i)^i},$$

¹This is an advertisement of an advertisement, much like the ad before watching a trailer online.

where $|A| = \sum_{i,j} a_{i,j}$ is the sum of the numbers in the plane partition. Why should this be true? This is actually related to the representation theory of S_n .

MacMahon made a conjecture for higher dimensions:

Theorem 1.1.

$$\sum_{A \in \mathcal{P}^{(d)}} t^{|A|} = \prod \frac{1}{(1 - t^i)^{(i_{d-1})}}.$$

This does not work. It actually fails for d = 3 and a low coefficient like the coefficient of t^7 . MacMahon did not understand why the formula was true, even though he proved it. Irreducible representations of S_n will correspond to partitions of $n \mathcal{P}_n := \{\lambda \in \mathcal{P} : |\lambda| = n\}$ because these correspond to conjugacy classes of S_n .

Theorem 1.2 (A. Young, 1897). Let f^{λ} be the dimension of S^{λ} . Then f^{λ} is the number of standard Young tableau with shape λ .

Definition 1.2. Given a partition λ , the *young diagram* of λ is the partition expressed as stacked rows of boxes.

Example 1.2. Take $\lambda = (4, 3, 3, 2, 1)$. The Young diagram of λ is

Definition 1.3. A Young tableau is a Young diagram where we fill in the boxes with the numbers 1 to n, according to the rule that the numbers have to be increasing going to the right and going down.

Example 1.3. Here is a Young tableau:

	1	2	3	7
	4	5	10	
	6	8		
	9	12		
-	11			

Theorem 1.3 (FRT, c.1960). $f^{\lambda} = \frac{n!}{\prod_{i,j} h_{i,j}}$, where $h_{i,j}$ is the length of the hook starting from position i, j and going to the right and downwards.

From representation theory, we can get that $f^{\lambda} | |S_n|$, so we know that f^{λ} is n! divided by something. The magic is in what that something is.

1.2 Representation theory of $GL_n(\mathbb{C})$

A basic representation of $\operatorname{GL}_n(\mathbb{C})$ is ρ_M is the matrix M acting on \mathbb{C}^n . Another representation is the determinant map. We will find that representations of $\operatorname{GL}_n(\mathbb{C})$ correspond to sequences $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

Theorem 1.4 (Weyl). dim (ρ_{λ}) equals the number of semistandard Young tableau with shape λ .

This will be another remarkable product formula. This, paired with the hook-length formula, will pave the way for a nice proof of MacMahon's formula.

1.3 Young graph

Definition 1.4. The **Young graph** is the graph with vertices $\lambda \in \Gamma$, and edges $(\lambda, \mu$ where $\mu \setminus \lambda$ is a single difference.

Essentially, we have taken all young diagrams and made an undirected graph, partially ordering them by containment.

Theorem 1.5. The number of loops of length 2n (that do not zigzag up and down) in the Young graph is n!.

Proof. We can prove this using basic representation theory.

$$\# \text{ loops} = \sum_{\lambda \in \mathcal{P}_n} (\# \text{ paths } \phi \to \lambda)^2 = \sum_{\lambda \in \mathcal{P}_n} \text{SYT}(\lambda)^2 = \sum_{\lambda \in \mathcal{P}_n} (f^{\lambda})^2 = |S_n| = n! \qquad \Box$$

What about general loops?

Theorem 1.6. The number of general loops is (2n-1)!!.